Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(34): e2209282, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36631958

RESUMO

Against the background of the current healthcare and climate emergencies, surface enhanced Raman scattering (SERS) is becoming a highly topical technique for identifying and fingerprinting molecules, e.g., within viruses, bacteria, drugs, and atmospheric aerosols. Crucial for SERS is the need for substrates with strong and reproducible enhancements of the Raman signal over large areas and with a low fabrication cost. Here, dense arrays of plasmonic nanohelices (≈100 nm in length), which are of interest for many advanced nanophotonics applications, are investigated, and they are shown to present excellent SERS properties. As an illustration, two new ways to probe near-field enhancement generated with circular polarization at chiral metasurfaces are presented, first using the Raman spectra of achiral molecules (crystal violet) and second using a single, element-specific, achiral molecular vibrational mode (i.e., a single Raman peak). The nanohelices can be fabricated over large areas at a low cost and they provide strong, robust and uniform Raman enhancement. It is anticipated that these advanced materials will find broad applications in surface enhanced Raman spectroscopies and material science.

2.
Nanoscale ; 14(34): 12437-12446, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-35979747

RESUMO

The adsorption and desorption kinetics of molecules is of significant fundamental and applied interest. In this paper, we present a new method to quantify the energy barriers for the adsorption and desorption of gas molecules on few-atom clusters, by exploiting reaction induced changes of the doping level of a graphene substrate. The method is illustrated for oxygen adsorption on Au3 clusters. The gold clusters were deposited on a graphene field effect transistor and exposed to O2. From the change in graphene's electronic properties during adsorption, the energy barrier for the adsorption of O2 on Au3 is estimated to be 0.45 eV. Electric current pulses increase the temperature of the graphene strip in a controlled way and provide the required thermal energy for oxygen desorption. The oxygen binding energy on Au3/graphene is found to be 1.03 eV and the activation entropy is 1.4 meV K-1. The experimental values are compared and interpreted on the basis of density functional theory calculations of the adsorption barrier, the binding energy and the activation entropy. The large value of the activation entropy is explained by the hindering effect that the adsorbed O2 has on the fluxional motion of the Au3 cluster.

3.
Nanoscale ; 14(14): 5425-5429, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322834

RESUMO

In a multi-branch metallic interconnect we demonstrate the possibility to induce targeted modifications of the material properties by properly selecting the intensity and polarity of the applied current. We illustrate this effect in Y-shape multiterminal devices made of Nb on sapphire for which we show that the superconducting critical current can be lowered in a controlled manner at a preselected junction. We further observe the gradual appearance of Fraunhofer-like critical current oscillations with magnetic field which indicates the gradual modification of a superconducting weak link. This method permits progressive modifications of a hand-picked junction without affecting the neighboring terminals. The proposed approach has the benefit of being inexpensive and requiring conventional electronics. This technique represents a major step toward all-electric control of multiterminal Josephson junctions.

4.
ACS Nano ; 14(9): 11765-11774, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32806022

RESUMO

The past years have witnessed major advancements in all-electrical doping control on cuprates. In the vast majority of cases, the tuning of charge carrier density has been achieved via electric field effect by means of either a ferroelectric polarization or using a dielectric or electrolyte gating. Unfortunately, these approaches are constrained to rather thin superconducting layers and require large electric fields in order to ensure sizable carrier modulations. In this work, we focus on the investigation of oxygen doping in an extended region through current-stimulated oxygen migration in YBa2Cu3O7-δ superconducting bridges. The underlying methodology is rather simple and avoids sophisticated nanofabrication process steps and complex electronics. A patterned multiterminal transport bridge configuration allows us to electrically assess the directional counterflow of oxygen atoms and vacancies. Importantly, the emerging propagating front of current-dependent doping δ is probed in situ by optical microscopy and scanning electron microscopy. The resulting imaging techniques, together with photoinduced conductivity and Raman scattering investigations, reveal an inhomogeneous oxygen vacancy distribution with a controllable propagation speed permitting us to estimate the oxygen diffusivity. These findings provide direct evidence that the microscopic mechanism at play in electrical doping of cuprates involves diffusion of oxygen atoms with the applied current. The resulting fine control of the oxygen content would permit a systematic study of complex phase diagrams and the design of electrically addressable devices.

5.
Sci Bull (Beijing) ; 65(19): 1607-1613, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659036

RESUMO

Manipulating the superconducting states of high transition temperature (high-Tc) cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics. Here, employing ionic liquid gating, a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr2CuO4±Î´ (PCO) films, based on two distinct mechanisms. Firstly, with positive electric fields, the film can be reversibly switched between superconducting and non-superconducting states, attributed to the carrier doping effect. Secondly, the film becomes more resistive by applying negative bias voltage up to - 4 V, but strikingly, a non-volatile superconductivity is achieved once the gate voltage is removed. Such phenomenon represents a distinctive route of manipulating superconductivity in PCO, resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unravelled by high-resolution scanning transmission electron microscope and in situ X-ray diffraction experiments. The effective manipulation of volatile/non-volatile superconductivity in the same parent cuprate brings more functionalities to superconducting electronics, as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-Tc superconductors.

6.
Nano Lett ; 19(11): 7681-7690, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31593477

RESUMO

We report on metal-assisted chemical etching of Si for the synthesis of mechanically stable, hybrid crystallographic orientation Si superstructures with high aspect ratio, above 200. This method sustains high etching rates and facilitates reproducible results. The protocol enables the control of the number, angle, and location of the kinks via successive etch-quench sequences. We analyzed relevant Au mask catalyst features to systematically assess their impact on a wide spectrum of etched morphologies that can be easily attained and customized by fine-tuning of the critical etching parameters. For instance, the designed kinked Si nanowires can be incorporated in biological cells without affecting their viability. An accessible numerical model is provided to explain the etch profiles and the physicochemical events at the Si/Au-electrolyte interface and offers guidelines for the development of finite-element modeling of metal-assisted Si chemical etching.

7.
J Mater Chem B ; 7(17): 2771-2781, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255079

RESUMO

Bacterial infections are one of the leading causes of disease worldwide. Conventional antibiotics are becoming less efficient, due to antibiotic-resistant bacterial strains. Therefore, the development of novel antibacterial materials and advanced treatment strategies are becoming increasingly important. In the present work, we developed a simple and efficient strategy for effective bacterial capture and their subsequent eradication through photothermal killing. The developed device consists of a flexible nanoheater, comprising a Kapton/Au nanoholes substrate, coated with reduced graphene oxide-polyethyleneimine (K/Au NH/rGO-PEI) thin films. The Au NH plasmonic structure was tailored to feature strong absorption in the near-infrared (NIR) region, where most biological matter has limited absorption, while PEI was investigated for its strong binding with bacteria through electrostatic interactions. The K/Au NH/rGO-PEI device was demonstrated to capture and eliminate effectively both planktonic Gram-positive Staphilococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 10 min of NIR (980 nm) irradiation and, to destroy and eradicate Staphilococcus epidermidis (S. epidermidis) biofilms after 30 min irradiation. The technique developed herein is simple and universal with potential applications for eradication of different micro-organisms.


Assuntos
Bactérias/química , Grafite/química , Plâncton/química , Polietilenoimina/química , Biofilmes , Humanos
8.
Nanoscale ; 10(45): 21475-21482, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427018

RESUMO

As the most sensitive magnetic field sensor, the superconducting quantum interference device (SQUID) became an essential component in many applications due to its unmatched performance. Through recently achieved miniaturization, using state-of-the-art fabrication methods, this fascinating device extended its functionality and became an important tool in nanomaterial characterization. Here, we present an accessible and yet powerful technique of targeted atom displacement in order to reduce the size of the weak links of a DC nano-SQUID beyond the limits of conventional lithography. The controllability of our protocol allows us to characterize in situ the full superconducting response after each electromigration step. From this in-depth analysis, we reveal an asymmetric evolution of the weak links at cryogenic temperatures. A comparison with time resolved scanning electron microscopy images of the atom migration process at room temperature confirms the peculiar asymmetric evolution of the parallel constrictions. Moreover, we observe that when electromigration has sufficiently reduced the junction's cross section, superconducting phase coherence is attained in the dissipative state, where magnetic flux readout from voltage becomes possible.

9.
Rev Sci Instrum ; 89(4): 043904, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716358

RESUMO

Electromigration has evolved from an important cause of failure in electronic devices to an appealing method, capable of modifying the material properties and geometry of nanodevices. Although this technique has been successfully used by researchers to investigate low dimensional systems and nanoscale objects, its low controllability remains a serious limitation. This is in part due to the inherent stochastic nature of the process, but also due to the inappropriate identification of the relevant control parameters. In this study, we identify a suitable process variable and propose a novel control algorithm that enhances the controllability and, at the same time, minimizes the intervention of an operator. As a consequence, the algorithm facilitates the application of electromigration to systems that require exceptional control of, for example, the width of a narrow junction. It is demonstrated that the electromigration rate can be stabilized on pre-set values, which eventually defines the final geometry of the electromigrated structures.

10.
Nanoscale ; 10(4): 1987-1996, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29319073

RESUMO

We demonstrate the in situ engineering of superconducting nanocircuitry by targeted modulation of material properties through high applied current densities. We show that the sequential repetition of such customized electro-annealing in a niobium (Nb) nanoconstriction can broadly tune the superconducting critical temperature Tc and the normal-state resistance Rn in the targeted area. Once a sizable Rn is reached, clear magneto-resistance oscillations are detected along with a Fraunhofer-like field dependence of the critical current, indicating the formation of a weak link but with further adjustable characteristics. Advanced Ginzburg-Landau simulations fully corroborate this picture, employing the detailed parametrization from the electrical characterization and high resolution electron microscope images of the region within the constriction where the material has undergone amorphization by electro-annealing.

11.
Small ; 13(26)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28544388

RESUMO

The electromigration process has the potential capability to move atoms one by one when properly controlled. It is therefore an appealing tool to tune the cross section of monoatomic compounds with ultimate resolution or, in the case of polyatomic compounds, to change the stoichiometry with the same atomic precision. As demonstrated here, a combination of electromigration and anti-electromigration can be used to reversibly displace atoms with a high degree of control. This enables a fine adjustment of the superconducting properties of Al weak links, whereas in Nb the diffusion of atoms leads to a more irreversible process. In a superconductor with a complex unit cell (La2-x Cex CuO4 ), the electromigration process acts selectively on the oxygen atoms with no apparent modification of the structure. This allows to adjust the doping of this compound and switch from a superconducting to an insulating state in a nearly reversible fashion. In addition, the conditions needed to replace feedback controlled electromigration by a simpler technique of electropulsing are discussed. These findings have a direct practical application as a method to explore the dependence of the characteristic parameters on the exact oxygen content and pave the way for a reversible control of local properties of nanowires.

12.
Sci Rep ; 7: 44569, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300182

RESUMO

The main dissipation mechanism in superconducting nanowires arises from phase slips. Thus far, most of the studies focus on long nanowires where coexisting events appear randomly along the nanowire. In the present work we investigate highly confined phase slips at the contact point of two superconducting leads. Profiting from the high current crowding at this spot, we are able to shrink in-situ the nanoconstriction. This procedure allows us to investigate, in the very same sample, thermally activated phase slips and the probability density function of the switching current Isw needed to trigger an avalanche of events. Furthermore, for an applied current larger than Isw, we unveil the existence of two distinct thermal regimes. One corresponding to efficient heat removal where the constriction and bath temperatures remain close to each other, and another one in which the constriction temperature can be substantially larger than the bath temperature leading to the formation of a hot spot. Considering that the switching current distribution depends on the exact thermal properties of the sample, the identification of different thermal regimes is of utmost importance for properly interpreting the dissipation mechanisms in narrow point contacts.

13.
Sci Rep ; 6: 27159, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27263660

RESUMO

Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.

14.
Nat Commun ; 7: 10560, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879257

RESUMO

Superconducting nanowires currently attract great interest due to their application in single-photon detectors and quantum-computing circuits. In this context, it is of fundamental importance to understand the detrimental fluctuations of the superconducting order parameter as the wire width shrinks. In this paper, we use controlled electromigration to narrow down aluminium nanoconstrictions. We demonstrate that a transition from thermally assisted phase slips to quantum phase slips takes place when the cross section becomes less than ∼150 nm(2). In the regime dominated by quantum phase slips the nanowire loses its capacity to carry current without dissipation, even at the lowest possible temperature. We also show that the constrictions exhibit a negative magnetoresistance at low-magnetic fields, which can be attributed to the suppression of superconductivity in the contact leads. These findings reveal perspectives of the proposed fabrication method for exploring various fascinating superconducting phenomena in atomic-size contacts.

15.
Sci Rep ; 5: 9187, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25778446

RESUMO

The response of superconducting devices to electromagnetic radiation is a core concept implemented in diverse applications, ranging from the currently used voltage standard to single photon detectors in astronomy. Suprisingly, a sufficiently high power subgap radiation may stimulate superconductivity itself. The possibility of stimulating type II superconductors, in which the radiation may interact also with vortex cores, remains however unclear. Here we report on superconductivity enhanced by GHz radiation in type II superconducting Pb films in the presence of vortices. The stimulation effect is more clearly observed in the upper critical field and less pronounced in the critical temperature. The magnetic field dependence of the vortex related microwave losses in a film with periodic pinning reveals a reduced dissipation of mobile vortices in the stimulated regime due to a reduction of the core size. Results of numerical simulations support the validy of this conclusion. Our findings may have intriguing connections with holographic superconductors in which the possibility of stimulation is under current debate.

16.
Small ; 10(10): 1959-66, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24590985

RESUMO

The design of many promising, newly emerging classes of photonic metamaterials and subwavelength confinement structures requires detailed knowledge and understanding of the electromagnetic near-field interactions between their building blocks. While the electric field distributions and, respectively, the electric interactions of different nanostructures can be routinely measured, for example, by scattering near-field microscopy, only recently experimental methods for imaging the magnetic field distributions became available. In this paper, we provide direct experimental maps of the lateral magnetic near-field distributions of variously shaped plasmonic nanoantennas by using hollow-pyramid aperture scanning near-field optical microscopy (SNOM). We study both simple plasmonic nanoresonators, such as bars, disks, rings and more complex antennas. For the studied structures, the magnetic near-field distributions of the complex resonators have been found to be a superposition of the magnetic near-fields of the individual constituting elements. These experimental results, explained and validated by numerical simulations, open new possibilities for engineering and characterization of complex plasmonic antennas with increased functionality.

17.
Opt Lett ; 38(13): 2256-8, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811894

RESUMO

Following the impact of a single femtosecond light pulse on nickel nanostripes, material deformations-or "nanobumps"-are created. We have studied the dependence of these nanobumps on the length of nanostripes and verified the link with plasmons. More specifically, local electric currents can melt the nanostructures in the hotspots, where hydrodynamic processes give rise to nanobumps. This process is further confirmed by independently simulating local magnetic fields, since these are produced by the same local electric currents.


Assuntos
Elétrons , Nanoestruturas , Níquel/química , Condutividade Elétrica
18.
ACS Nano ; 7(4): 3168-76, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23464670

RESUMO

We present direct experimental mapping of the lateral magnetic near-field distribution in plasmonic nanoantennas using aperture scanning near-field optical microscopy (SNOM). By means of full-field simulations it is demonstrated how the coupling of the hollow-pyramid aperture probe to the nanoantenna induces an effective magnetic dipole which efficiently excites surface plasmon resonances only at lateral magnetic field maxima. This excitation in turn affects the detected light intensity enabling the visualization of the lateral magnetic near-field distribution of multiple odd and even order plasmon modes with subwavelength spatial resolution.


Assuntos
Nanopartículas/química , Nanotecnologia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Campos Magnéticos , Nanopartículas/ultraestrutura , Doses de Radiação , Espalhamento de Radiação
19.
Adv Mater ; 24(10): OP29-35, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22228434

RESUMO

In response to the incident light's electric field, the electron density oscillates in the plasmonic hotspots producing an electric current. Associated Ohmic losses raise the temperature of the material within the plasmonic hotspot above the melting point. A nanojet and nanosphere ejection can then be observed precisely from the plasmonic hotspots.


Assuntos
Lasers , Nanotecnologia/métodos , Nanopartículas Metálicas/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...